Subwavelength Lateral Spectral Splitting

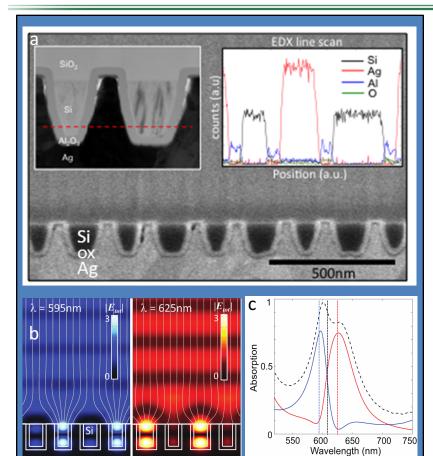


Figure: a) Cross sections of the photon sorting device b) Simulations showing photon sorting

c) Absorption in narrow and wide Si beams

Scientific Achievement

Realized a way to perform highly effective photon sorting by wavelength at the nanoscale.

Significance and Impact

Spectral splitting can be employed to create multijunction solar cells that offer substantially higher efficiency than single junction cells.

Research Details

- Proof-of-concept spectral splitting devices were realized to demonstrate photon sorting and subsequent charge extraction (panel a).
- Simulations demonstrate extremely effective photon sorting by wavelength using optical resonances in dual-sized Si nanowires (panel b)
- Near-unity absorption can be achieved in the semiconductor (panel c)

Soo Jin Kim, Ju-Hyung Kang, Mehmet Mutlu, Joonsuk Park, Woosung Park, Robert Sinclair, Shanhui Fan, Pieter G. Kik, and Mark L. Brongersma, under review Nat Comm.

Work was performed at Stanford University

LIGHT-MATERIAL INTERACTIONS IN ENERGY CONVERSION

